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Abstract. The approximate Green’s functions of the localized electrons, obtained by the
cumulant expansion of the periodic Anderson model in the limit of infinite Coulomb repulsion, do
not satisfy completeness even for the simplest families of diagrams, like the chain approximation.
The idea that employing8-derivable approximations would solve this difficulty is shown to be
false by proving that the chain approximation is8-derivable and does not satisfy completeness.
After finding a family of diagrams with Green’s functions that satisfy completeness, we put
forward a conjecture that shows how to select families of diagrams with this property.

1. Introduction

The cumulant expansion that was employed by Hubbard [1] to study a model of a strongly
correlated system, currently known as the ‘Hubbard model’ [2], was extended to the periodic
Anderson model (PAM) in a previous paper [3] (which in the following will be referred to as
I). The method employed by Hubbard was a perturbative expansion around the atomic limit.
He introduced the operatorsXj,ab = |j, b〉〈j, a| that transform the local state|a〉 at sitej into
the local state|b〉 at the same site. He developed a diagrammatic method that circumvents
the fact that theX-operators do not satisfy the usual commutation properties of the fermion
or boson operators, obtaining a linked cluster expansion that involves unrestricted lattice
sums of connected diagrams [4, 5]. Hubbard’s method [1] has been applied to the PAM by
Hewson [6], and the rules for the diagrammatic expansion in real space and imaginary time,
as well as those for reciprocal space and frequencies, were explicitly derived in I. Both the
hopping of the conduction electrons and the intra-site Coulomb repulsionU between the
localized or f electrons were included in the unperturbed Hamiltonian in I. A rectangular
conduction band was employed, because it simplifies the analytic calculations while still
showing the main features of the model. At a given sitej, the state space of the f electrons
is spanned by four states: the vacuum state|j, 0〉, the two states|j, σ 〉 of one f electron
with spin componentσ , and the state|j, 2〉 with two electrons of opposite spin. The PAM
in the limit of infinite electronic repulsion (U = ∞) is considered in the present paper, so
that the state|j, 2〉 is always empty, and can be projected out of the space. In this reduced
space, the identityIj at sitej should satisfy the completeness relation:

Xj,00 + Xj,σσ + Xj,σ̄ σ̄ = Ij (1.1)
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whereσ̄ is the spin component opposite toσ, and the threeXj,aa are projectors into the three
states|j, 0〉 and |j, σ 〉 of the basis. The statistical averagesna of Xj,aa are independent of
j because of translational invariance, and can be calculated from the approximate Green’s
functions (GF). From equation (1.1) it should follow that

n0 + nσ + nσ̄ = 1. (1.2)

It was shown in I that this relation (called ‘completeness’ in what follows) is not satisfied
in general, and in particular that it fails for the well known chain approximation (CHA)
[6, 7, 8], which is the more general cumulant expansion with only second-order cumulants.
The purpose of this paper is to discuss this basic problem of the cumulant expansion, and
to propose a systematic way of adding a set of diagrams to an arbitrary family so that
completeness is satisfied by thena calculated with the corresponding approximate GF.

Our first attempt to solve this problem was to employ the8-derivable approximations
(cf. Wortis [4]) that were introduced in a different context by Baym and Kadanoff [9] under
the name of ‘conservative approximations’. For the cumulant expansions, they are obtained
by starting from a family of ‘skeleton diagrams’ [4] and decorating the vertices in all of
the possible different manners. The order of the cumulants that appear in the corresponding
contributions increases with the added decorations, so a full calculation becomes impractical
because of the difficulty of calculating higher-order cumulants; one should then resort to
keeping only cumulants up to a small order (fourth in our case). The failure of these
approximations to satisfy completeness could then be attributed to the truncation of the
family of diagrams. This situation was clarified when we found that the CHA is a8-
derivable approximation without any truncation of the family of diagrams, and this type of
8-derivable approximation will be called ‘exact’ in what follows. The fact that the CHA
does not satisfy completeness shows that employing8-derivable approximations does not
guarantee that property, and that a different type of solution should be pursued.

The main result of the present paper is to show how to add diagrams to the GF in the
CHA, so that the increased family satisfies completeness. This leads us to state a conjecture
that gives a systematic way of achieving completeness by adding a set of diagrams to an
arbitrary family. This conjecture has been verified in a number of cases, including diagrams
with infinite fourth-order cumulants, but a general derivation has not yet been found. A
family of diagrams built following this conjecture will be called a ‘complete-cumulant
approximation’ (CCA). From the stated conjecture it naturally follows that the approximate
GF for the conduction electrons do not require the addition of extra diagrams to satisfy
completeness.

2. Some basic aspects of the PAM

2.1. The Hamiltonian and the Hubbard operators

The perturbative treatment of the electronic Coulomb repulsion leads to singularities caused
by the long range of this interaction, and summation of an infinite series of the most
divergent terms is necessary to remove them. To study the problem from an atomic point of
view, Hubbard considered the most important local contribution in this limit, describing the
interaction at each sitej by the termUnj↑nj↓, where thenjσ is the number operator of an
electron localized at sitej with spin componentσ . In Hubbard’s model the electrons can
jump between sites, and the problem remains rather difficult to treat, even with the removal
of the long-range interaction.

In the PAM, two types of electronic state are considered: (i) localized electrons with the
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interactionUnj↑nj↓, but without hopping; and (ii) a wide band of uncorrelated electrons.
A hybridization term is also added, allowing electronic transitions between the two types of
state and thus giving mobility to the f electrons. The PAM is considered to provide a good
schematic description of systems like transition metal and rare-earth compounds, as well as
intermediate-valence and heavy-fermion systems.

Employing Hubbard operators, the Hamiltonian of the PAM in the limit of infinite
Coulomb repulsion (U = ∞) can be written as [3]

H =
∑
k,σ

Ek,σC
†
k,σCk,σ +

∑
j,σ

Ej,σXj,σσ + Hh. (2.1)

The first term of this equation corresponds to the uncorrelated conduction band, where the
C

†
k,σ andCk,σ are the usual operators for creation and destruction of c electrons with wave

vector k, componentσ of spin and energyEk,σ respectively. The second term describes
the independent sites of f electrons, while the last term is the hybridization Hamiltonian,
which is considered a perturbation in the present work:

Hh =
∑
j,k,σ

(Vj,k,σX
†
j,0σCk,σ + V ∗

j,k,σC
†
k,σXj,0σ ). (2.2)

The operatorH acts on a space from which all the local states|j, 2〉, with two electrons
of opposite spin at sitej , have been projected out. The operatorXj,0σ destroys the electron
in state |j, σ 〉 leaving the site in the vacuum state|j, 0〉 with energyEj,0 = 0, and its
Hermitian conjugateX†

j,0σ = Xj,σ0 reverses that process.
TheU has disappeared from the Hamiltonian of equation (2.1) through the introduction

of the Xj,ab, and it is the special properties of these operators that are now responsible for
all the correlations due to the Coulomb interactionU .

The Hubbard operatorsXj,ab are not usually Fermi or Bose operators, and the product
rule

Xj,abXj,cd = δbcXj,ad (2.3)

should be employed when the two operators are at the same site. For different sites one
should first classify the operators into two families: one says thatXj,ab is of the ‘Fermi
type’ when |a〉 and |b〉 differ by an odd number of fermions, and that it is of the ‘Bose
type’ when they differ by an even number of fermions. The most convenient definition
is then to say that at different sites, twoX-operators of the Fermi type anticommute, and
that they commute when at least one of them is of the Bose type. Clearly theX

†
j,0σ and

Xj,0σ are of the Fermi type, and theXj,σσ andXj,00 are of the Bose type. To complete the
definition, theXj,ab should anticommute (commute) with theC†

k,σ andCk,σ when they are
of the Fermi type (Bose type).

As the grand canonical ensemble of electrons is employed, the HamiltonianH in the
statistical operator is substituted for with

H = H − µ

(∑
k,σ

C
†
k,σCk,σ +

∑
j,a

νaXj,aa

)
= H0 + Hh (2.4)

whereνa is the number of electrons in state|a〉 andµ is the electronic chemical potential.
Most formulas then look simpler when the shifted energies

εj,a = Ej,a − νaµ and εk,σ = Ek,σ − µ (2.5)

are employed.
The symbolsYγ andY (γ ) will be used in the following sections to denote both theX-

andC-operators, whereγ includes all of the indices necessary to characterize the operator.
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For the X-operatorsγ = (f ; j, α, u), wherej is the site andα identifies the transition
|a〉 → |b〉 with the restriction that|a〉 has just one electron more than|b〉, andu = ±, so
Yγ = Xj,ba for γ = (f ; j, α, u = −) and Yγ = X

†
j,ba for γ = (f ; j, α, u = +). For the

C-operatorsYγ = Ck,σ for γ = (c; k, σ, u = −) andYγ = C
†
k,σ for γ = (c; k, σ, u = +).

The operatorYγ in the interaction and Heisenberg pictures will be denoted byY (γ, τ ) and
Ŷ (γ, τ ) respectively, and〈A〉H and〈A〉 will be respectively used for exact and unperturbed
averages in the grand canonical ensemble.

+

+ +

+ . . . =

+ + . . . =

b)

a)

c)

Figure 1. Typical cumulant diagrams for one-particle GF. (a) The simplest family of diagrams
that satisfies completeness (cf. section 4). (b) The diagrams of the chain approximation for the
f-electron GF, represented by the filled square to the right. (c) As (b), but for the c electrons,
represented by an empty square.

2.2. The diagrammatic expansion for the PAM

The cumulant expansion employed in the present work [3] has been widely used for the
classic Ising model [4] and extended to quantum fermionic systems by Hubbard [1]. Because
the starting point is the atomic limit, the meaning of the diagrams is different from that of
the widely used Feynman diagrams, and a brief description of this type of diagrammatic
expansion therefore seems adequate. In I, the diagrammatic expansion for both the grand
canonical potential and the GF are given in detail, but only the diagrams contributing to
the GF of the type〈(X̂j,α(τ )X̂j ′,α′)+〉H are considered here. Notice that the Matsubara
expansion is employed, soτ is the imaginary time,

X̂j,α(τ ) = exp(τH)Xj,α exp(−τH)

and the subscript+ indicates that the operators inside the parentheses are taken in the order
of increasingτ to the left, with a change of sign when the two Fermi-type operators have
to be exchanged to obtain this ordering.

In figure 1(a) we show three of the infinite diagrams that contribute to
〈(X̂j,α(τ )X̂j ′,α′)+〉H. The full circles (f vertices) correspond to the cumulants [10] of
the f electrons. Each line reaching a vertex is associated with one of theX-operators
of the cumulant, and the free lines (not joining an empty circle) correspond to the
externalX-operators appearing in the exact GF. The f cumulants are linear combinations
of products of free propagators, each term having a total number ofX-operators equal to
the order of the cumulant. The first diagram in figure 1(a) corresponds to the simplest free
propagator〈(Xj,α(τ )Xj ′,α′)+〉, and the second diagram in that figure has an empty circle (c
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vertex) that corresponds to the conduction electron cumulant, equal to the free propagator
〈(Ckσ (τ )C

†
kσ )+〉. The interaction is represented by the lines (edges) joining two vertices,

and because of the structure ofHh they always join two different vertices; the number of
edges in a diagram gives its order in the perturbation expansion. To explicitly define the
cumulants, it is necessary to introduce external fieldsξ in the Hamiltonian, by adding the
extra term

He(ξ) = −
∑

γ

ξγ (τ )Yτ = He[ξ(τ )]

to equation (2.4), which already depends onτ in the Schr̈odinger picture through the
independent fieldsξγ (τ ). The ξγ are Grassmann variables, which anticommute between
themselves and with all theYτ of the problem. Keeping non-zeroξγ , thenth-order cumulant
is defined by

M0
n(l1, l2, . . . , ln; ξ) ≡ 〈(Y (l1) · · ·Y (ln))+〉ξc = δ1δ2 · · · δn ln[Z0(β, ξ)] (2.6)

whereZ0(β, ξ) is the unperturbed grand partition function (i.e., with allVj,k,σ = 0) in the
presence ofξ , and the symbolδa is used to indicate the functional derivative(δ/δξ(la)).

a)

b)

...c) = + +

d)

l2 l1j

j
l2 l1

Figure 2. In (a) a linked diagram of the GF forξ = 0 is shown, and in (b) its skeleton diagram
is given. (c) A propagator with a renormalized local vertex (withξ = 0) shown as a full circle
inside a dashed circle, together with few of the unrenormalized diagrams it represents. (d) A
few of the unrenormalized diagrams that constitute the self-field.

Cumulants containing statistically independent operators are zero, and those appearing
in the present expansion (withHh as a perturbation) vanish unless they contain onlyX-
operators at the same site or onlyC- or C†-operators with the samek andσ . In the final
expansion one setsξγ = 0, and the only c cumulants left are of second order, because the
uncorrelatedC-operators satisfy Wick’s theorem. On the other hand, the f vertices can have
many legs, all corresponding toX-operators at the same site, like the fourth-order cumulant
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appearing in the third diagram of figure 1(a). A rather more complicated diagram is shown
in figure 2(a), showing a sixth-order cumulant.

The family of all of the infinite diagrams with cumulants of at most second order is
shown in figure 1(b), and the corresponding family for the GF of the c electrons is shown
in figure 1(c). Describing the full GF with this subfamily of all of the diagrams is called
the ‘chain approximation’ (CHA), and it gives the exact solution when there is no Coulomb
correlation (U = 0). When the spin is eliminated from the problem, the Hamiltonian of
equation (2.1) has no correlation term and the CHA is again an exact solution. The meaning
of the CHA will be further discussed in section 3.

In the Feynman perturbation expansion, Wick’s theorem is valid and only second-
order propagators appear, while the interactions are provided by the Coulomb interaction.
In the present treatment theU has disappeared in the limitU → ∞ (or is included in
the unperturbed Hamiltonian whenU is finite), and the correlations appear through the
properties of theX-operators, because they have non-zero cumulants of order higher than
two, that include propagators for two and more particles. In the Feynman expansion of the
one-particle GF, the two-particle GF appear in the self-energy, which contains all of the
correlations.

2.3. Calculation of the electronic occupation numbers

To calculate the f-electron occupation numbers one should employ the exact GF in real
space and imaginary timeτ , which can be related to the corresponding GF in reciprocal
space and frequency by (cf. equation (3.31) in I)〈
(Ŷ (f ; j, 0σ, u, τ )Ŷ (f ; j ′, 0σ, u′, τ ′))+

〉
H = 1

βNs

∑
k,k′

∑
ωω′

exp[−i(uk · Rj + u′k′ · R′
j )

− i(ωτ + ω′τ ′)]
〈
(Ŷ (f ; k, oσ, u, ω)Ŷ (f ; k′, oσ, u′, ω′))+

〉
H (2.7)

whereRj is the position of sitej . A similar expression is obtained for the c-electron GF by
employing the transformation of the operatorsCk,σ to the Wannier representation. Because
of the invariance under lattice and time translations it follows that

〈(Ŷ (f ; k2, α2, u2 = −, ω2)Ŷ (f ; k1, α1, u1, ω1))+〉H
≡ Gff

α2α1
(k2, ω2)1(u2k2 + u1k1)1(u2 + u1)1(ω2 + ω1). (2.8)

In the usual way [11], one assigns the valuesG
ff

σσ ′(k, ω) to the points iπν/β along the
imaginary axis of the complex frequencyz = ω + iy (whereω is a real energy variable
already shifted byµ as discussed in section 2.1), and makes the analytic continuation to the
upper and lower half-planes of the complex frequencyz. The resulting functionḠff

σσ ′(k, z)

is minus the Fourier transform of the real-time GF, and many properties of the system can
be calculated with these GF. Usually one has to integrateḠ

ff

σσ ′(k, z) times a function ofz
along a circuit very close to the real axis in the complex plane. In the paramagnetic case
one finds

nf =
∫ ∞

−∞
ρf (ω)fT (ω) dω (2.9)

n0 =
∫ ∞

−∞
ρf (ω)(1 − fT (ω)) dω (2.10)

where

ρf (ω) = 1

π
lim
ε→0

Im

{
1

Ns

∑
k

Ḡ
ff

σσ ′(k, ω + iε)

}
(2.11)
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is the total spectral density of the f electrons per site and per spin component.

3. The chain approximation as a8-derivable approximation

The 8-derivable approximation was introduced by Baym and Kadanoff [9] for a system
with two-particle interactions, and a review of its application to the Ising model was given
by Wortis [4]. The related vertex renormalization was recently discussed by Metzner [5] for
the cumulant expansion of the Hubbard model, and its general treatment is closely related
to ours, so only a rather brief discussion of the method will be presented here.

In this method one represents the whole family of diagrams that give the exact GF with
a family of ‘skeleton’ diagrams [4], in which the local vertices have no ‘insertions’ [4]
(cf. figure 2(b), which shows the skeleton diagram of figure 2(a)). This is accomplished
by replacing each bare cumulantM0

n at a local vertex in the skeleton diagrams with the
renormalizedMn (cf. figure 2(c)), which includes the contribution of all of the possible
insertions at the same vertex (the subscriptn indicates the number of edges reaching that
vertex in the skeleton diagram).

The insertions are represented by diagrams in which the ‘external vertex’ [4] (i.e., the one
belonging to the skeleton diagram) is left without the full or empty circle (cf. figure 2(d)). Its
contribution is calculated in the same way as for the corresponding GF diagrams (cf. rules
3.5–6 in I), but replacing the cumulant at the external vertex by the number 1. It is
convenient to classify the insertions by their ‘valence’ [4], i.e. the number of edges reaching
to the external vertex, and each of these edges is associated with one operatorY (l) = Yγ (τ ),

which would appear in the cumulant corresponding to that vertex in the full diagram. The
indexl = (γ, τ ) characterizes completely the operatorY (l), and is kept fixed in the definition
of the insertion diagram.

To obtainMn it is convenient to introduce the ‘self-field’ [4]Sm(l1, l2, . . . , lm), which
gives the sum of the contributions of all the topologically distinct and connected insertions,
with m external edges associated with the indicesl1, l2, . . . , lm (a connected insertion is one
that does not split when its external edges are separated at the external vertex).

The Grassmann external fieldsξ introduced in I must be kept in theMn and Sm in
order to use the equation (2.6) (cf. equation (3.14) in I). Even in the presence ofξ , the
M0

n(l1, l2, . . . , lm; ξ) are zero [3, 4] unless either all thel1, l2, . . . , lm correspond to ‘local’
Y (l) at the same sitej or all correspond to ‘conduction’Y (l) with the same wave vectork.
It will be then convenient to writeM0

n(a; l1, l2, . . . , ln; ξ) with a = j (a = k) to indicate
the common sitej (wave vectork) of all the l1, l2, . . . , ln. It is also convenient to write
Mn(a; l1, l2, . . . , ln; ξ) andSm(a; l1, l2, . . . , lm; ξ), and a few of the diagrams that constitute
M2 andS2 are shown in figures 2(c) and 2(d).

The renormalizedMn in the presence ofξ is now expressed by the relation

Mn(a; l1, . . . , ln; ξ) =
{

exp

[ ∞∑
r=1

∫
dln+1 · · ·

∫
dln+r Sr(a; ln+1, . . . , ln+r; ξ)

× δn+1 · · · δn+r

]
M0

n(a; l1, . . . , ln; ξ)

}
(3.1)

where ∫
dls =

∑
αs

∑
us

∫ β

0
dτs

(changingαs into σs for the conduction vertices).
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At the end of the calculation the valueξ = 0 is taken, and all of the diagrams that would
not contribute are discarded. As Wick’s theorem is valid for theC-operators whenξ = 0,
all the cumulants of c electrons with more than twoC-operators can be neglected, but all
the cumulants with only oneC-operator must be kept throughout the procedure, because
application of a singleδa would transform any of those cumulants into one with twoY (l),
which might not vanish whenξ = 0 (namely, when the twoY (l) areC-operators with the
samek, σ and oppositeu).

To calculate the self-fields it is also possible to consider only skeleton diagrams
without insertions and replace all of theM0

n by the renormalizedMn: this would give
the renormalized form of the self-field, which can be denoted bySm(a; l1, l2, . . . , lm; M; ξ)

to emphasize its functional dependence onM. The equation (3.1) becomes then a non-
linear equation inM, and its solution would allow the calculation of the GF employing
only skeleton diagrams.

The procedure discussed above is equivalent to the calculation with unrenormalized
vertices [4], and its validity depends on the fact that all of the diagrams in the calculation
are ‘rooted’ [4], i.e., they have external (fixed) vertices. In the calculation of the free
energy, only vacuum diagrams appear, and there is no unique way to associate a skeleton
with a given diagram. As the vacuum diagrams have no external vertices, one says that
such a diagram is irreducible (the equivalent of a skeleton diagram) when no vertex can
be considered to have two or more insertions (any vertex of a vacuum diagram can always
be considered to have at least one insertion). The functional8[M, ξ ] is then defined as
the sum of the contributions of all irreducible and connected vacuum diagrams, when at
each vertex the unrenormalizedM0

n is substituted for with the renormalizedMn. From the
definition of8[M, ξ ] and the rules for diagram calculation in I, it is clear that the self-fields
satisfy the relation (cf. equation (42) in [5])

Sm(a; l1, l2, . . . , lm; M; ξ) = δ8[M, ξ ]

δ Mm(a; l1, l2, . . . , lm; ξ)
. (3.2)

Because of overcounting of unrenormalized diagrams, the grand canonical potential
(cf. equation (3.19) in I) is not given by�(β, ξ) = �0(β, ξ) − T 8[M, ξ ]. To solve this
difficulty one writes†

Z0(β, ξ) =
∏
j

Z0(β, j, ξj )
∏
k

Z0(β, k, ξk) (3.3)

and defines

M0
0(a; ξ) = ln Z0(β, a; ξa). (3.4)

If in equation (2.6) lnZ0(β, ξ) is substituted for with lnZ0(β, a; ξa), the sameM0
n as defined

before are obtained forn > 0, while M0
0(a; ξ) is obtained forn = 0. A renormalized

M0(a; ξ) is then defined by equation (3.1) whenM0
0(a; ξ) takes the place ofM0

n in the
right-hand side, and it is equal toM0

0(a; ξ) plus the sum of the diagrams obtained by
making all of the possible insertions at the single vertexa. The overcounting of diagrams
in 8[M, ξ ] can be now corrected by following the derivation due to Bloch and Langer (see
[12, 13]) for the Ising model. Because of its topological character, it can be applied directly
to our problem by only making the appropriate changes in the calculation of the diagrams.

† In the absence of hybridization one can write the Hamiltonian (with external fields included) as the sum of
operators, each one of them containing onlyY (l)-operators with a single value ofj or of k. Equation (3.3) holds
because all of those operators commute, and the definition ofZ0(β, a, ξa) is obvious.
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One then obtains

ln Z(β, ξ) = 8[M, ξ ] +
∑

a

M0(a; ξ)

−
∑
a,n

∫
dl1 · · ·

∫
dln Sn(a; l1, . . . , ln; ξ)Mn(a; l1, . . . , ln; ξ). (3.5)

Note that from the discussion above it follows that all of the diagrams of lnZ0(β, ξ) are
already included in the right-hand side of equation (3.5) through theM0(a; ξ).

The cumulant GF are now given by (cf. equations (A.26), (A.28) of I)

Gn(l1, l2, . . . , ln; ξ) = δ1δ2 · · · δnln[Z(β, ξ)] (3.6)

and one can prove that

G1(l1; ξ) = M1(j ; l1; ξ) (3.7)

(cf. equation (85) in [4] for the equivalent property in the Ising model). Although this GF
vanishes whenξ = 0, equation (3.6) gives

G2(l1, l2; ξ) = δM1(j ; l1; ξ)

δξ(l2)
(3.8)

which does not necessarily vanish whenξ = 0.

a) b) c)

α1
α1

τ1u1 τ1u1 τ1u1

k1σ1

k1σ1j1 j1

Figure 3. The 8-derivable approximation that gives the CHA. (a) The skeleton diagram that
gives 8̄. (b) The self-fieldS̄1[k1, 1̄, ξ ], given in equation (A3). (c) The self-field̄S1[j1, 1, ξ ],
given in equation (A2).

The relations derived above correspond to the expansion that sums all the diagrams
and would give the exact results. The basic philosophy of the8-derivable approximation
is to select subfamilies of diagrams that give approximateZ̄(β, ξ) by employing
equation (3.5), and then generate all the approximate GF by starting from this unique
quantity (cf. equation (3.6)). This procedure is expected to give consistent approximations
for the different physical quantities involved [4]. The8-derivable approximation can then
be stated as follows.

Rule 4.1
(a) Choose an approximatē8[M̄, ξ ] consisting of a subset of the irreducible diagrams

that give the exact8[M, ξ ]. The approximateZ̄(β, ξ) is obtained from equation (3.5) by
employing the approximatē8, M̄n and S̄n instead of the exact ones.
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(b) DefineS̄n with equation (3.2), employing the approximate8̄ andM̄n.
(c) DefineM̄n with equation (3.1), employing the self-fieldsS̄m(a; l1, l2, . . . , lm; M; ξ)

defined in (b).

Note that to apply part (b), onlȳSn as a function of theM̄n is needed, so the relation
obtained in part (c) can be considered again as a non-linear equation in theM̄n.

Rule 4.1 is now applied to the simplest possible family of skeleton diagrams with
ξ 6= 0, which is shown in figure 3(a). Although its contribution vanishes whenξ = 0, it
nevertheless generates the CHA (cf. figure 1(b)) for the one-particle GF.8 for this family
is

8̄ =
∑

j1,α1,u1,k1,σ1

∫ β

0
dτ1 M̄1(k1; σ1, −u1, τ1; ξ)v(j1, α1, k1, σ1, u1)M̄1(j1; α1, u1, τ1; ξ)

(3.9)

wherev(j1, α1, k1, σ1, u1) is the hybridization constant defined in equation (3.20) of I for
the general model.

The calculation of the one-particle GF in this approximation is given in appendix A. Its
Fourier transform, in both space and time, is given by

Gf,σ (k, ω) ≡ G
ff

2 (k, σ, u = −, ω) = −(iω − εkσ )D0
σ

(iω − εσ )(iω − εkσ ) − |V (k)|2D0
σ

(3.10)

for the f electron, whereD0
σ = 〈X00〉 + 〈Xσσ 〉. The corresponding GF for the conduction

electrons is

Gc,σ (k, ω) = −(iω − εσ )

(iω − εσ )(iω − εkσ ) − |V (k)|2D0
σ

. (3.11)

These two equations are exactly the GF of the CHA already studied in I and correspond
to the family of diagrams shown in figures 1(b) and 1(c). As was discussed in I, the CHA
does not satisfy completeness, and it can be concluded that the8-derivable approximation
does not guarantee this property by itself. The result is rather conclusive, because it was
not necessary to add an extra condition to the maximum order of the cumulants employed,
and in this sense one can say that this is an ‘exact’ approximation. The choice of8[M, ξ ]
itself is sufficient to restrict the self-fields to only theS1(ξ), and as a consequence of their
vanishing whenξ = 0, the cumulants in the GF considered above are restricted to second
order only.

The only difference between equations (3.10) and (3.11) and the corresponding GF for
U = 0 is the presence of theD0

σ , which is then responsible for all the correlation effects
in this approximation. WhenU → ∞, the correlation makes impossible the occupation of
an electron with spinσ at a given sitej when 〈Xj,σ̄ σ̄ 〉 = 1, and in that case there is no
hybridization with the conduction electron at the same site. The effect of the CHA is then
to substitute for this local correlation, different at each site, an average one, equal for all
sites, and the hybridization constant|V (k)|2 is reduced by the same factorD0

σ = 1− 〈Xσ̄σ̄ 〉
at all sites. One can then think of the CHA as a sort of mean-field approximation. This
interpretation is further supported by the fact that the skeleton diagrams of the8-derivable
approximation that gives the CHA correspond to the molecular-field approximation in the
Ising model [4].

In the Ising model, all of the closed rings are usually added [4, 12] to obtain a better
8[M, ξ ]. In this last case, the self-fieldsS2 are not zero and cumulants of any even order
should then be used. The difficulty of calculating these cumulants in the quantum case
(Hubbard model, PAM) makes it necessary to consider only the lowest-order cumulants



The cumulant expansion of the periodic Anderson model 5027

(e.g., to fourth order only), and one could then blame the lack of completeness on this
further approximation. The discovery that the CHA is also8-derivable settles this question.

4. Complete approximations

In the preceding section, the CHA was shown to be an ‘exact’8-derivable approximation
that does not satisfy completeness (cf. equation (1.1)) in the space of the f electrons (although
it is automatically satisfied in zeroth order). At the same time, it seemed puzzling that
completeness was satisfied in the space of c electrons for all of the families of diagrams
that were considered.

In our study of the problem, we happened to find a particular set of diagrams that
satisfied completeness in the f space: this led us to formulate the conjecture stated below,
which we have verified for many other families of diagrams but could not prove in general.
This conjecture also explains why completeness is satisfied in c space by any family of
diagrams.

Conjecture
Completeness is satisfied when the family of diagrams obeying theorem 3.3 in I, which

is employed to approximate the one-particle GF, is such that:
(1) for any open diagram with external verticesi andj , there is also a closed diagram

obtained by ‘joining’i andj into a single vertexj ; and
(2) for any diagram with only one external vertex at a sitej , there are also all of the

possible open diagrams obtained by ‘separating’j into a pair of different verticesi andj .

Any family of GF diagrams that satisfies this conjecture will be called a ‘complete-
cumulant approximation’ (CCA) in what follows. It should be emphasized that we have
verified this conjecture only with families of diagrams that have cumulants of a maximum
order of four; some of them have diagrams with an infinite number of fourth-order
cumulants, but they will not be discussed here.

The conjecture above implies that any family of diagrams for the c-electron GF should
be complete, because joining two external verticesi and j of a diagram would give a
single vertex joined by at least four edges; by Wick’s theorem, the corresponding cumulant
vanishes, and so does the contribution of the diagram.

In general, the CCA are not8-derivable, because their corresponding family of diagrams
would not have all those that result by dressing the f vertices of a family of skeleton
diagrams. The simplest8-derivable approximation is the CHA, derived from the skeleton
diagram in figure 3(a), and to make it a CCA it is necessary to add all of the diagrams
shown in figure 4(b), as will be discussed in the following section, 4.1. These last diagrams
correspond to adding a particular set of decorations to the first diagram of figure 4(a) but
not to all the infinite diagrams represented by the second diagram of the same figure, so it is
clear that this CCA is not8-derivable. In general, any ‘exact’8-derivable approximation
containing simple loops as self-fields would have diagrams with unrenormalized cumulants
of any even order, and this would not be the case for most CCA.

The simplest possible family of diagrams that give a CCA is illustrated in figure 1(a),
and the corresponding GF verify the conjecture above, both in the atomic limit [14, 15] and
for a rectangular band.
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Figure 4. (a) The complete-chain approximation: empty squares symbolize the diagrams of
the c-electron GF in the CHA (cf. figure 1(c)). (b) The diagrams added to the CHA to make
it complete. (c) The simplest diagram in (b) with the indices employed in the calculation of
appendix A.

4.1. The complete-chain approximation

To calculate the occupation numbers at a sitej , the GF at that siteGf ;σ (j, ω) are needed.
The corresponding diagrams for the CHA are shown in figure 1(b), and following our
conjecture a CCA is obtained by adding all of the diagrams obtained by joining in that
figure the external verticesi andj of the chains of any length. This approximation will be
called a ‘complete-chain approximation’ (c-CHA) and its family of diagrams is shown in
figure 4(a). The corresponding GF will be denoted byGC

f ;σ (ω), where the site indexj was
dropped because of the invariance under lattice translations. It has two contributions:

GC
f ;σ (ω) = Cf,σ (ω) + SCH

σ (ω) (4.1)

whereCf,σ (ω) is the GF at sitej obtained for the CHA (cf. equation (4.2) below, which
employs equation (3.10)) andSCH

σ (ω) is the contribution of the diagrams with loops, added
to the CHA to make it a CCA (cf. figure 4(b)).

As in I, a local hybridization interactionV (k, σ ) = V will be considered, as well
as a rectangular band of width 2W for the unperturbed conduction electrons, centred at
the energyE0. The corresponding density of states per unit energy, per site and per spin
component is thenρ0(ω) = ρ0 = 1/(2W) for −W + E0 < ω + µ < W + E0. Hereω is
a real energy variable, and it is shifted byµ because the averages are taken in the grand
canonical ensemble. The contribution of the first term is given by

Cf,σ (ω) ≡ 1

N

∑
k

Gf,σ (k, ω) = G0
f,σ (ω)

{
1 − G0

f,σ (ω)ρ0|V |2 ln
[
R0(ω)

]}
(4.2)

where

R0(ω) = (iω − εm
1 )(iω − εm

2 )/((iω − εM
1 )(iω − εM

2 ))

and

G0
f,α,u(ω) = −D0

α/(iω − uεα).
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The εm
i and εM

i are respectively the minimum and maximum values of each of the two
‘bands’ εi,σ (k) in the CHA, wherei = 1 corresponds to the ‘upper band’ andi = 2 to the
‘lower band’:

εi,σ (k) = 1

2

{
εkσ + εf σ ±

√
(εkσ − εf σ )2 + 4D0

σ |Vk|2
}

. (4.3)

The corresponding quantity for the c electrons

Cc,σ (ω) ≡ 1

N

∑
k

Gc,σ (k, ω) = ρ0 ln
[
R0(ω)

]
(4.4)

appears in the calculation ofSCH
σ (k, ω) (cf. figure 4), which also requires cumulants with

four X-operators of the ‘Fermi type’. As discussed before, all of the cumulants of order
higher than two vanish when the corresponding operators satisfy Wick’s theorem, and one
can then use standard diagrammatic expansions. The higher-order cumulants ofX-operators
are non-zero because of the correlations that are built into the ionic states by the infinite
Coulomb repulsion and are hidden into the ‘free-ion’ HamiltonianH0 of equation (2.4). The
calculation of the necessaryX-cumulants is discussed in appendix B and that ofSCH

σ (ω) is
summarized in appendix C. In the reciprocal space,SCH

σ (k, ω) does not depend onk, so
SCH

σ (ω) = SCH
σ (k, ω), and the following expression was obtained:

SCH
σ (ω) = 1

N

∑
k

SCH
σ (k, ω) = −|V |2(AKσ (ω) + BK2

σ (ω)Cc,σ (ω) + CK2
σ (ω)) (4.5)

whereA = [D0
σ (1 − D0

σ ) − x2
σ ]βI1 − D0

σ I2; B = −D0
σ (1 − D0

σ ) + xσ ; and C = −D0
σ I1;

xσ = 〈Xσσ 〉; and

I` = 1

β

∑
ω1

Cc,σ (ω1)K
`
σ (ω1) (with ` = 1, 2). (4.6)

Cc,σ (ω) is given by equation (4.4), andKσ(ωs) = −1/(iωs −εf σ ) = G0
f,σ (ωs)/D

0
σ . The GF

of c electrons in the c-CHA are the same as in the CHA, because the cumulants of order
greater than two vanish for theC-operatorsY (l).

The analytic continuation̄GC
f ;σ (z) of equation (4.1) has singularities on the real axis

only: they are two branch cuts on the intervals [εm
j ,εM

j ] (with j = 1, 2) as well as first-
and second-order poles atεf σ . The integral of the spectral densityρf (ω) of equation (2.11)
along the real axis gives the modifiedDσ = 〈X00〉H + 〈Xσσ 〉H, but in the present case it
is better to perform theω-integration before the sum overk. The ω-integration can then
be replaced by a complex integration of the analytic continuationsḠf,σ (k, z)+ S̄CH

σ (k, z)

along a contour surrounding the real axis, and it is not difficult to show that only the
first-order poles atεf σ of these two functions contribute, giving thek-independent value
D0

σ −A|V |2. The subsequent sum over all of thek-states gives then the same result for any
unperturbed density of statesρ0

c (εk) of the c electrons. The f-electron occupation number
is given by equation (2.10) and can be calculated in a similar way, but all of the terms
of ḠC

f ;σ (z) contribute because of the presence of the Fermi function in the integrand. The
result depends on the unperturbed energyεk of the c electrons, and we could not find a
general analytical result for arbitraryρ0

c (εk), so the integration overεk (i.e. the sum over
k) had to be performed numerically for each density of states.

The values of the occupation number per site and per spin of the f electronsnf,j,σ =
〈Xj,σσ 〉H and of the c electronsnc,j,σ = 〈C†

j,σCj,σ 〉H were calculated for representative
values of the model’s parameters within the c-CHA. The averages at different sites and for
the two values ofσ are equal when the system is paramagnetic and invariant under lattice
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Figure 5. The quantity 2nf + n0 is plotted as function of the chemical potentialµ to test
completeness for the CHA and the c-CHA in the atomic limit, i.e., for a conduction band
of zero width. The following set of parameters was employed:Ef = −0.05, V = 0.1 and
T = 0.025, all measured in the same energy units.
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Figure 6. The same type of plot as in figure 5, but for a rectangular band of width 2W = π ,
with the same parameters as employed in that figure.

translations, and one can then writenf = nf,j,σ and nc = nc,j,σ . The quantity 2nf + n0

is plotted in figure 5 against the chemical potentialµ for both the CHA and the c-CHA in
the atomic limit [15] forEjσ = Ef = −0.05, V = 0.1 andT = 0.025, all measured in
the same energy units. The same values are employed in figure 6 for a rectangular band of
width 2W = π. In these figures it is clear that the c-CHA satisfy completeness while the
CHA does not.
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One interesting question is whether the completeness obtained with our conjecture is
an artifact of the particular choice of a rectangular density of statesρ0

c (εk) and of the
local hybridization. In the case of the c-CHA, it was not difficult to repeat the numerical
calculations for other densities of states and also for nearest-neighbour hybridization. All of
the combinations of either local or nearest-neighbour hybridization with theρ0

c (εk) of a chain
with nearest-neighbour hopping and also of a Gaussian density of states were employed,
and in all cases completeness was obtained for the c-CHA.

5. Summary and conclusions

We have studied the8-derivable approximation, which had already been applied to the Ising
model [4, 12, 13], and was shown by Kadanoff and Baym [9] to have important conservation
properties. We have been able to find the skeleton diagram (cf. figure 3(a)) that gives the
CHA: its contribution vanishes whenξ = 0, but generates all of the diagrams of the CHA
that remain in that limit. This skeleton gives an ‘exact’8-derivable approximation, because
only second-order cumulants appear whenξ = 0, and it is therefore not necessary to neglect
contributions of higher-order cumulants which are too laborious to calculate. As was shown
in I, the CHA approximation does not satisfy completeness, and it then follows that the use
of a 8-derivable approximation would not guarantee that property.

Although this result settled one problem, it was still necessary to find a systematic
way of choosing families of diagrams that would satisfy completeness. Analysing different
families, one was found with the desired property. This led us to advance the conjecture
stated in section 4, which was tested with several families of diagrams that have infinite
cumulants of at most fourth order, although it was not verified for diagrams with higher-order
cumulants. Increasing the family of diagrams of the CHA with those required to satisfy the
conjecture defines a new approximation, which was called the c-CHA. Completeness was
tested numerically for the c-CHA, and the results presented in section 4 are excellent. As
discussed in section 4, another result that follows from the conjecture is the proof that all
of the families of diagrams for the c-electron GF are complete.

It should be noticed that the GF derived with the CHA is formally similar to those
found in Gutzwiller’s treatment [16] of the PAM and in the lowest approximation of the
slave-boson formulation [17]. In those two methods, two hybridized bands of uncorrelated
electrons are obtained, but with a renormalized energyε̃f of the local electron. Completeness
is automatically satisfied in those bands, and the effect of correlations is achieved by forcing
nf < 0.5 through an adequate choice ofε̃f , which should then be rather close to the Fermi
energy. Differently from these two methods, the correlations are automatically built up in
the Hubbard operators employed in the present calculation. In the CHA, as in other methods
[7], an energy renormalization is not found [18]. We believe that the renormalization would
be obtained in the cumulant expansion by adding extra diagrams to the CHA and making
further approximations to the expressions obtained.

5.1. Conclusions

The results presented here appear to advance the understanding of the diagrammatic
cumulant expansion in the following respects.

(1) A conjecture that shows how to choose families of GF diagrams that would satisfy
completeness is proposed and verified, employing different types of densities of states of the
c electrons, as well as local and nearest-neighbour hybridization in a simple cubic lattice.
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(2) It is shown that the CHA is an ‘exact’8-derivable approximation that does not
satisfy completeness.

(3) The GF of the CHA and of the c-CHA are analytical off the real axis. The behaviour
of the spectral density is rather good, but important features like the Kondo resonance are
absent in the spectral densities of the CHA and of the c-CHA, although the last one contains
diagrams which have one cumulant with spin-flip processes.

(4) A deeper understanding of why the conjecture is true, at least for the diagrams with
fourth-order cumulants at most, is still lacking.
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Appendix A. Calculation of the GF for the CHA as a Φ-derivable approximation

In this appendix, the details of the derivation of the GF for the CHA as a8-derivable
approximation are given. Thē8 of equation (3.9) is given here in abbreviated notation:

8̄ =
∑

j1,α1,u1,k1,σ1

∫ β

0
dτ1 M̄1(k1; 1̄; ξ)v(j1, k1, 1)M̄1(j1; 1; ξ) (A1)

whereM1(j1; α1, u1, τ1; ξ) = M1(j1; 1; ξ) andM1(k1; σ1, −u1, τ1; ξ) = M1(k1; 1̄; ξ). It is
also convenient to use the slightly different notationv(j1, α1, k1, σ1, u1) = v(j1, k1, 1) and
v(j1, α1, k1, σ1, −u1) = v(j1, kk1, 1̄) for the hybridization constant (here the abbreviation
(1) includesα1, σ1, u1 but it does not includeτ1).

Equation (3.2) is now employed to obtain the corresponding self-fields:

S̄1(j1; 1; ξ) =
∑
k1σ1

v(j1, k1, 1)M̄1(k1; 1̄; ξ) (A2)

and

S̄1(k1; 1̄; ξ) =
∑
j1α1

v(j1, k1, 1)M̄1(j1; 1; ξ). (A3)

All of the remaining self-fieldsSn with n > 2 reduce to zero in this approximation, and
equation (3.1) gives the renormalized̄M1(a; ξ), namely

M̄1(j ; 1; ξ) = exp

{∫
d2 S̄1(j ; 2; ξ)

δ

δξ(j ; 2)

}
M0

1(j ; 1; ξ) (A4)

and

M̄1(k; 1; ξ) = exp

{∫
d2 S̄1(k; 2; ξ)

δ

δξ(k; 2)

}
M0

1(k; 1; ξ). (A5)

The GF

Gj,j ′,2(1, 1′; ξ) = δM̄1(j ; 1; ξ)

δξ(j ′, 1′)

= M̄2(j ; 1; 1′; ξ)δ(j, j ′) +
∫

d2 M̄2(j ; 1; 2; ξ)
δS̄1(j ; 2; ξ)

δξ(j ′, 1′)
(A6)
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is obtained from equation (3.8), and from equation (A2) it follows that

Gj,j ′,2(1; 1′; ξ) = M̄2(j ; 1; 1′; ξ)δ(j, j ′)

+
∑
k2

∫
d2 M̄2(j ; 1; 2; ξ)v(j, k2, 2)Gk2,j ′,2(2̄, 1′; ξ). (A7)

A mixed GF appears in the right-hand side of this last equation, and from equations (3.8)
and (A5) it is given by

Gk,j ′,2(1̄; 1′; ξ) = δM̄1(k; 1̄; ξ)

δξ(j ′, 1′)

= δ

δξ(j ′, 1′)
exp

{∫
d2 S̄1(k; 2; ξ)

δ

δξ(k; 2)

}
M0

1(k; 1̄, ξ). (A8)

Calculaing the derivatives, and observing that whenξ = 0 the conduction cumulants of
order greater than two vanish, it follows that

Gk,j ′,2(1̄; 1′; ξ) =
∫

d2
δS̄1(k; 2; ξ)

δξ(j ′, 1′)
M̄2(k; 1̄; 2; ξ). (A9)

The derivatives of the self-fieldsS1 can be calculated from equation (A3) and then
replaced in equation (A9). Substituting this result in equation (A7), the required GF is
obtained:

Gj,j ′,2(1; 1′; ξ) = M̄2(j ; 1; 1′; ξ)δ(j, j ′) +
∑
k2,j3

∫
d2 d3M̄2(j ; 1; 2; ξ)

× v(j, k2, 2)v(j3, k2, 3̄)M̄2(k2; 2̄, 3; ξ)Gj,j3,2(3̄; 1′, ξ). (A10)

The Grassmann fieldsξ are ‘turned off’ to recover the invariance under lattice
translations, and the ionic cumulants then become site independent. The site indices are
not necessary any more, and will not be explicitly indicated in the following. The spatial
Fourier transform of equation (A10) then gives

G
ff

2 (k, α, u, τ ; k′, α′, u′, τ ′) = 1(uk + u′k′) 1(u + u′) M̄2(f ; α, u, τ, α′, u, τ ′))

+
∑
α1σ1

∑
α2σ2

∫ β

0
dτ1 dτ2 M̄2(f ; α, u, τ ; α1, u

′, τ1)M̄2(k; σ1, u, τ1, σ2, u
′, τ ′)

× V (α1, k, σ1, u
′)V (α2, k, σ2, u)G

ff

2 (k, α2, u, τ2, k
′, α′, u′, τ ′) (A11)

where all the indices are indicated explicitly. All of the GF are now functions of the
wave vectorsk, and the notationGff

2 and Gcc
2 is used to distinguish between them. The

summation over the dummyu-indices has been already performed in equation (A11), and
1(k) = δ(k, 0).

The time Fourier transform of equation (A11) then gives

G
ff

2 (k, α, u, ω; k′, α′, u′, ω′) = 1(uk + u′k′)1(u + u′)1(ω + ω′)M̄2(f ; α, u, ω, α′, u′, ω′)

+
∑
α1σ1

∑
α2σ2

M̄2(f ; α, u, ω; α1, u
′, −ω)M̄2(k; σ1, u,−ω; σ2, u

′, ω)

× V (α1, k, σ1, u
′)V (α2, k, σ2, u)G

ff

2 (k, α2, u, ω,k′, α′, u′, ω′) (A12)

where (cf. equation (3.38) in I)

v(j, α,k, σ, u) = V (α, k, σ, u)N−1/2
s exp(iuk · Rj ). (A13)
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The inhomogeneous term of equation (A12) vanishes unlessω′ = −ω, u′ = −u and
k′ = −k, and when the Hamiltonian is independent of spin, this last equation is easily
solved for the PAM withU = ∞. Writing σ in place ofα = (0σ) the solution is given by

G
ff

2 (k, σ, u, ω) = M̄2(f ; σ, u, ω)

1 − |V (k, σ )|2M̄2(k; σ, u, ω)M̄2(f ; σ, u, ω)
(A14)

where the following abbreviations were employed:

G
ff

2 (k, σ, u, ω) ≡ G
ff

2 (k, σ, u, ω; −k; σ, −u, −ω)

M̄2(f ; σ, u, ω) ≡ M̄2(f ; σ, u, ω; σ, −u, −ω)

M̄2(k; σ, u, ω) ≡ M̄2(k; σ, u,−ω; σ, −u, ω)

|V (k, σ )|2 =V (0σ, k, σ,−u)V (0σ, k, σ, u).

The self-fieldsS̄1 vanish forξ = 0, and the renormalized̄M2 coincide then with theM0
2

(cf. equation (3.1)), so

M̄2(f ; σ, u, ω) = M0
2(f ; σ, u, ω) = − D0

σ

iω + uεσ

(A15)

and

M̄2(k; σ, u, ω) = M0
2(k; σ, u, ω) = − 1

iω + uεkσ

(A16)

where the unrenormalized cumulants are equal to the free one-electron GF of the f electrons
and c electrons respectively, and can be obtained from the rules in I [14, 19]. Substituting
these relations in equation (A14), one obtains the localized GF of the CHA, already given
in equations (3.10) and (3.11).

Appendix B. The generalized version of Wick’s theorem

When resorting to the diagrammatic expansion of I it is necessary to calculate cumulants of
X-operators at each local vertex of the diagram (cf. rule 3.5 in I). As physical properties
are obtained in the absence of the Grassmann fieldsξ (one has to setξ = 0 at the end
of the calculation), onlyξ = 0 will be considered here. The cumulants required in the
expansion are〈(Y (γ1, τ1) · · ·Y (γn, τn))+〉c (where all theγi = (f ; js, αi, ui) correspond
to the same sitejs). To calculate them it is sufficient to know [10] the usual averages
〈(Y (γ1, τ1) · · ·Y (γr, τr ))+〉 which can be obtained from all the partitions of theY (γi, τi)

that appear in the cumulant, and the cumulants are then obtained by inverting relations like
equation (3.16) in I. The averages required have all theY (γi, τi) at the same site, and are
given by

〈(Y (γ1, τ1) · · ·Y (γn, τn))+〉 = Tr{exp(−βH0)(Y (γ1, τ1) · · ·Y (γn, τn))+}
Tr{exp(−βH0)} . (B1)

The usual averages of Fermi or Bose operators are calculated in a systematic way
by employing a statistical version of Wick’s theorem. A derivation of this theorem [20],
based in the commutation or anticommutation relations of the Fermi or Bose operators, was
extended [21] to more general operators of the Bose type, and this treatment was further
generalized [6] to Fermi-type operators. The technique is based on reducing the average
of n operatorsY (γ, τ ) to a linear combination of averages ofn − 1 operatorsY (γ, τ ).

This procedure is repeated until averages of only twoY (γ, τ ) remain, as is the case with
Wick’s theorem. The resulting expression is rather more complicated than Wick’s theorem
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because each commutator or anticommutator ofX-operators gives a linear combination of
up to two otherX-operators rather than a number, as happens with bosons or fermions. It
is interesting to note that Wick’s theorem is obtained from theorem 3.1 in I when all of the
cumulants with more than two operatorsY (γ, τ ) are zero.

The reduction rule, which expresses the simple averages ofn operatorsY (γ, τ ) as a
linear combination of averages withn − 1 operatorsY (γ, τ ), will be stated here without
derivation, which follows that of Yang and Wang [21]. The only modification is the
determination of the correct sign for each term, because theY (γ, τ ) can be Fermi-type
operators.

In this appendix all of theY (γ, τ ) correspond to f electrons at the same site, and
γ = (b, a) serves only to characterize the transitions|a〉 → |b〉. The restriction that|b〉
is to have one electron less than|a〉 will be lifted in this appendix, because more general
operatorsYγ appear in the calculation of the averages, and this extension would also allow
us to consider a rather arbitrary scheme of levels for|a〉 and|b〉, as was done in the general
model of section 2 in I.

Employing the general HamiltonianHf of the free f electrons (cf. section 2 in I), it is
straightforward to prove

exp(−βHf ) =
∑

c

(exp(−βεc))Xcc (B2)

and from this equation follows the basic relation used to prove the reduction rule:

Y (γ, τ ) exp(−βHf ) = exp[βε(γ )] exp(−βHf ) Y (γ, τ ) (B3)

as well as

Y (γ, τ ) = Y (γ ) exp[βε(γ )]. (B4)

whereε(γ ) = εb − εa corresponds to the transitionγ , i.e. to |a〉 → |b〉.
Before stating the reduction rule it is convenient to define several quantities associated

with any pair of operatorsY (γr) andY (γs): first,

[Y (γr, τr ); Y (γs, τs)]η = Y (γr, τr )Y (γs, τs) − ηrsY (γs, τs)Y (γr , τr ) (B5)

where ηrs = −1 if both operators are of the Fermi type, andηrs = +1 otherwise; and
second,

η(γr) =
{

−1 if Y (γr) is of the Fermi type

+1 if Y (γr) is of the Bose type.
(B6)

The basic relation for the calculation of the usual averages is thereduction rule: given
the average〈(Y (γ1, τ1) · · ·Y (γn, τn))+〉 choose one operatorY (γi, τi) which will be called
the ‘generator’, in such a way that the two states|ai〉 and |bi〉 in γi are not identical; then
the following relation holds:

〈(Y (γ1, τ1) · · ·Y (γn, τn))+〉 =
∑
r 6=i

N(i, r)K(γi, τi − τr)〈(Y (γ1, τ1) · · ·Y (γr−1, τr−1)

× [Y (γr, τr ); Y (γi, τr )]ηY (γr+1, τr+1) · · ·Y (γn, τn))+〉. (B7)

In this expression:

(i) in each term of the right-hand side, theY (γi, τi) from the original average has
disappeared, and oneY (γr, τr ) of the original average has been substituted for with
[Y (γr, τr ); Y (γi, τr )]η with Y (γi, τr ) at the same imaginary time ofY (γr, τr );
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(ii) N(i, r) = −1 if Y (γi) is of the Fermi type, and there are an odd number of Fermi-
type operators thatY (γi) has to crossto appear just to the left ofY (γr), andN(i, r) = +1
otherwise; and

(iii) we have

K(γi, τ ) = exp[τε(γi)]{(θ(τ ) + θ(−τ)η(γi) exp[βε(γi)])/(1 − η(γi) exp[βε(γi)])}.

The restriction that the generator should not be an operatorXcc is not important
for averages with few operators, because in this case the direct calculation is simple.
Nevertheless, we have derived a reduction rule for this type of generator, but it will not be
given here because it is not necessary in the present work.

As in this appendix there is no restriction on the two states|a〉 and |b〉, the u in
γ = (α, u) is superfluous, and only the transitionα will be given. As the Fourier transform
of the cumulants is usually employed (cf. equation (3.32) of I), the transform of the
K(γ, τ) = K(α, τ) given above is necessary, and it is given byK(α, ω) = −1/(iω + εα).

This K(γ, ω) is valid for theXα of both Fermi and Bose type, and it has a much simpler
structure thanK(γ, τ). The corresponding GF is in this case

G(η)
α (τ ) = θ(τ )〈Xα(τ)X+

α 〉 + η(α)θ(−τ)〈X+
α Xα(τ)〉

and it is related to theK(γ, ω) by G(η)
α (ω) = D(η)

α K(γ, ω) whereD(η)
α = 〈Xbb〉−η(α)〈Xaa〉.

The cumulants with four operators that appear in the present work are given by

〈(Xα(ω1)X̄α(ω2)Xα′(ω3)X̄α′(ω4))+〉c = δαα′Dα(1 − Dα)Kα(ω1)Kα(ω3)

× {1(ω1 + ω2)1(ω3 + ω4) − 1(ω3 + ω2)1(ω1 + ω4)}
− (1 − δαα′){〈Xσσ 〉2

H0
Kα(ω1)Kα′(ω3)1(ω1 + ω2)1(ω3 + ω4)

+ 〈Xσσ 〉H0Kα(ω3)Kα′(ω1)1(ω3 + ω2)1(ω1 + ω4) + β−1(DαKα(ω1)

+ Dα′Kα′(ω3))Kα(−ω2)Kα′(−ω4)1(ω1 + ω2 + ω3 + ω4)}. (B8)

Appendix C. The calculation of SCH
σ (ω)

The infinite graphs that contribute toSCH
σ (k, ω) are shown in figure 4(b), and the simplest

one that is not included in the CHA will be considered first. This graph is repeated in
figure 4(c) to identify all the indices necessary to calculate its contribution. From the rule
3.7 and equation (3.33) in I, one obtains in this approximation

〈(Ŷ (f ; k, α, u, ω)Ŷ (f ; k′, α′, u′, ω′))+〉H
≡ 1(uk + u′k′)1(u + u′) 1(ω + ω′)Sff

αα′(k, u, ω) (C1)

where

S
ff

αα′(k, u, ω) = − 1

N

∑
α1α2

∑
q1ω1σ1

[V (α1, q1, σ1, −)V (α2, q1, σ1, +)/(iω1 + ε(q1, σ1))]

× 〈(X(α, u, ω)X(α′, −u, −ω)X(α1, u1 = −, −ω1)X(α2, u2 = +, ω1))+〉c.
(C2)

In this equation there is a cumulant with fourX-operators of the ‘Fermi type’. This
and the higher-order cumulants ofX-operators are non-zero because of the correlations that
are built into the ionic states, as the infinite Coulomb repulsion is hidden in the ‘free-ion’
HamiltonianH0 of equation (2.4). The rules for calculating the cumulants appearing in rule
3.7 of I for the general model (cf. section 2 in I) are summarized in appendix B, but only the
results for the PAM withU = ∞ are necessary, and in this case the expressions are simpler
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because there are only two ionic transitionsα = (0, σ ). Assuming thatHh commutes with
the σ -component of spin, and hence that there is conservation ofσ in the GF, it follows
that α = α′ = (0, σ ) in equation (C2). The contribution of the graph in figure 4(c) is
independent ofk, and employing a spin-independent hybridizationV (k, σ ) = V (k) it is
given by

S0
σ (ω) = 1

N

∑
q

|V (q)|2 {[Dσ(1 − Dσ) − x2
σ ]Kσ(ω)βI 0

1,σ (q)

− [Dσ(1 − Dσ) + xσ ]K2
σ (ω)G0

q,σ (ω)

− Dσ [Kσ(ω)I 0
2,σ (q) + K2

σ (ω)I 0
1,σ (q)]} (C3)

wherexσ = 〈Xσσ 〉, Kσ(ωs) = G0
f,σ (ωs)/Dσ = −1/(iωs − εf σ ) and

I 0
`,σ (q) = 1

β

∑
ω1

G0
q,σ (ω1)K

`
σ (ω1) (with ` = 1, 2). (C4)

Employing the usual complex integration techniques [19, 22] one obtains for zero magnetic
field

I 0
1,σ (q) = (fT (εq) − fT (εf ))/(εq − εf )

and

I 0
2,σ (q) = (−fT (εq) + fT (εf ) + (εq − εf )f ′

T (εf ))/(εq − εf )2

wherefT (z) = (1 + exp(z/T ))−1 is the Fermi function andf ′
T (z) its derivative with respect

to z.
To obtainSCH

σ (k, ω), note that in figure 4(b) there are infinitely many graphs with loops
of any length. From equation (C3) it is then clear thatSCH

σ (k, ω) is obtained by substituting
for G0

q,σ (ω) in equations (C3) and (C4) with theGc,σ (q, ω) (cf. equation (3.11)) represented
by the diagrams in figure 1(c). When a local hybridizationV (k) = V is considered, all of
the Gc,σ (q, ω) appear in equation (C3) only in the combination

(1/N)
∑

q

Gc,σ (q, ω) ≡ Cc,σ (ω)

which was already obtained for a rectangular band of width 2W centred at the energyE0

in section 4 (cf. equation (4.4)). The expression forSCH
σ (k, ω) is again independent ofk

and is given by

SCH
σ (k, ω) = −|V |2{AKσ (ω) + BK2

σ (ω)Cc,σ (ω) + CK2
σ (ω)} (C5)

whereA = [
D0

σ (1 − D0
σ ) − x2

σ

]
βI1 − D0

σ I2; B = −D0
σ (1 − D0

σ ) + xσ ; and C = −D0
σ I1;

and

I` = 1

β

∑
ω1

Cc,σ (ω1)K
`
σ (ω1) (with ` = 1, 2) (C6)

andKσ(ωs) = −1/(iωs − εf σ ) = G0
f,σ (ωs)/D

0
σ . This is the result shown in section 4.
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